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N O N L I N E A R  E F F E C T S  IN MEDIA H E A T E D  
BY E L E C T R O M A G N E T I C  R A D I A T I O N  

I. L. Khabibullin UDC 536.37:538.56 

The features of thermal processes in dielectric absorbing media heated by high-frequency electromag- 
netic radiation are investigated. It is shown that the temperature dependence of the absorption coeffi- 
cient of the electromagnetic radiation can result in the development of  nonlinear effects: progressive 
heating in a regime with peaking and localization of the heating region, heating in a regime of  light- 
ening of  the medium, and formation of quasistationary temperature waves. 

1. The heating of media by electromagnetic radiation is determined by the density of the heat sources 
Q, which, in the one-dimensional case, has the form 

Q = 2o~ q0 exp ( - 2 t ~ ) ,  t~ = 1 ~00 ~ - t g  ~i. (1) 

The theory of dielectric losses and experimental investigations [1, 2] show that e and tan ~i depend on 
the temperature T. As a consequence, the absorption coefficient and the depth of  penetration of radiation into 
the medium h = l/2tx are also a function of the temperature. For different media, the dependence t~(T) can 
have the form of a monotonically increasing or decreasing function; nonmonotonic dependences with a single 
or several extreme values are also possible. Certain features of the process of  heating of dielectrics by a mi- 
crowave electromagnetic field in the case where the absorption coefficient increases with the temperature have 
been investigated in [3, 4]. 

In the case of a nonmonotonic dependence with an extremum at T = Tm, the following approximation 
is possible: 

dot=++_ldot I x (2) 
d--T ~-f sign (T m -  7) ,  sign x -  I xl " 

From (1) it follows that 

dQ. dct 
dT = 2q° ~ exp ( -  2ax) (1 - 2txx). (3) 

It is seen from (3) that when dtx/dT> 0, when the absorption coefficient increases with the heating, the me- 
dium heats up in a regime with peaking (in the region x < h, dQ/dT> 0) and localization (dh/dT< 0), and 
hence self-accelerating heating of a region confined to the surface x = 0 occurs. In this case, in the region 
x > h, dQ/dT < O. 

When dcx./dT< O, the depth of penetration of  radiation into the medium increases with the heating; in 
this case, dQ/dT< 0 at x < h and dQ/dT > 0 at x > h. In the process of heating, the medium becomes more 
transparent to radiation, in other words, heating in a regime of lightening of  the medium occurs. The heating 
of the medium occurring in this case would be expected to be more uniform and deep than with the heating 
realized in the previous case. 
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In the case of  a nonmonotonic dependence ct(T) determined by (2) with the positive sign in the right- 

hand side (a convex dependence), heating in a regime with peaking and localization occurs in the initial stage 
where T < Tm. At T = Tm, the regime of heating changes and it occurs with lightening of the medium. In the 
case of the negative sign in the right-hand side of (3) (a concave dependence), the situation is opposite. 

When 2ctx = 1, i.e., x = h, d Q / d T  = 0; the surface h = h(T) = h(x,  t) is a moving one, and we will 
call it the wave of  lightening of the medium. Obviously, on the lightening wave x = Xs(O, h = h(xs(t) ,  t) = 
const, and tx = tX(Xs(t), t) = const. Then 

d a  3~x 3 a  3x s 

--dr = 3t + 3x s 3t  - O.  

From this expression we can determine the velocity of the illumination wave: 

bx s 3a  3o~ (4) 

2. The dielectric properties of the medium change as it heats up, which results in a dependence of  the 
dielectric permittivity of the medium on the coordinate. Because of this, it becomes necessary to solve the 
wave equation for the strength of an electromagnetic field in an inhomogeneous medium. Such a solution can 
be obtained by the Wentzel-Kramers-Brillouin method [5, 6]. Here the density of  the heat sources in weakly 
absorbing dielectrics (tan 2 ~ << 1) is represented in the form 

Q = 2q0 o~ (x, t) exp 2tx (x', t) dr" . 

Note that this expression can also be obtained directly from the Umov-Point ing equation determining the den- 
sity of  the heat  sources in terms o f  the electromagnet ic-radiat ion intensi ty and from the generalized 
Bouguer-Lambert-Beer  law that describes the dissipation of radiation energy in an inhomogeneous absorbing 
medium: 

3q 
Q = --~-xx ' dq = -  ot (x, t) q (x, t) dx  . 

Combining these relations, we obtain an expression for Q that coincides with the above expression with an 
accuracy to a factor equal to two, which can be eliminated by overdetermining ct. 

3. The subject of further investigation is the following problem for the heat-conduction equation: 

30 320 
- ~  = aO-~z2 + 2 f  (z, "c) 

z 

exp ( -  ~ f (z', "c) dz') , 

0 

(5) 

O0 (o, x) 
3z - - - 0 ,  0 ( z ,0 )=  0 (oo, x) = l .  (6) 

Here a0 = 4~,T0oq)/q0, 0 = T / T  o, z = 2tXoX, "c = t i t  o, to = pcT0/tx0q0, f l z ,  x) = ct(x, 0ct0, and ct(x, t) ---ct(T) is 
a specified function. 

In all probability, problem (5)-(6) cannot be solved analytically. In the case where the medium is 
heated by a volumetric heat source, the influence of molecular heat conduction is as a rule insignificant; in- 
deed, a0 << 1 for typical values of  the parameters. At a = 0, the Cauchy problem for an integro-differential 
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Fig. 1. Temperature distribution at a fixed time for different temperature 

dependences of  the absorption coefficient: l) 7 >  0; 2) y = 0; 3) ~/< 0. 

Fig. 2. Dynamics o f  the change in the temperature profile with time for 

7 < 0 :  1) ~ = 0.2; 2) 1; 3) 3; 4) 5. 

equation in which the coordinate z enters as a parameter, follows from (5)-(6). In [6], the solution o f  an analo- 

gous problem for the linear dependence tx = tXo + ~ ( T -  To) has been obtained. 

In accordance with the preceding, we consider three cases: 

f = f ~  = 1 ,  f = f b  = 1 + a 1 (0 - 1), f = f ~  = 1 - a 1 (0 - 1),  

a I = 7To/0~o, y = d o . / d T ,  (7) 

which describe constancy of  the absorption coefficient and its increase and decrease with increase in the tem- 

perature. 
The corresponding solutions of  problem (5)-(6) at ao = O, obtained by  the method described in [6], are 

as follows: 

0 a = 1 + 2x exp ( -  z ) ,  
1 1 - exp ( -  2all; ) 

Oh= l + - -  
a I exp z -  [l - e x p  ( -  2alx)] ' 

(8) 

1 1 - exp (2oI'C) 
0 c = 1 - (9) 

a 1 exp z - [1 - exp ( -  2alx)] 

The special features of  solutions (8)-(9) are determined by the parameter  a 1, which depends on the 

initial value o f  the absorption coefficient and the coefficient of  its temperature dependence. When  a 1 --) 0, the 

obvious result: Qb - )  Qa, Qc --> Qa occurs. Figure 1 shows the dependence 0(z) for  'c = 1 and al = 0.3, where 
curves 1, 2, and 3 correspond to 0b, 0a, and 0c. In the calculations it was assumed that pc = 2.106 J/(m3.K), 

To -- 300 K, ix0 = 0.1 l/m, q0 = 10s W/m2, and to = 6"104 sec. The course o f  the curves is evidence in favor 

of the above conclusions: for y > 0 ,  more intense heating o f  the near zone occurs,  and for y < 0  the far zone 
(curve 3) heats up more intensely. As the parameter  al  increases, this tendency manifests itself more sharply 

- curve 1 rises sharply at the limit, and curve 3 goes below curve 2 and flattens out gradually. 
An analysis of the second expression o f  (8) shows that with time (for a fixed a 0  progressive heating 

of  the near zone is realized, and for "c --> oo localization of  the heating region occurs:  

l 1 
Ob (~ --~ oo) = l + 

a I exp (z) - 1 
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Thus, for the fixed point zl there is a limiting temperature determined only by the parameter al.  The 

time o f  establishment of  the asymptotic temperature is o f  the order of  z ,~-  cons t / a l .  For example, for "r~ = 
4.605/al and al = 1 the difference between the temperatures 0b and 0b ('r--~ oo) is less than 0.01 at z > 0.01. 

Results o f  a calculation performed by formula (9) for al = 1 and different values of  'r are presented in 

Fig. 2. As the medium heats up, the absorption coefficient decreases and with time a quasistationary tempera- 
ture wave whose amplitude and velocity tend asymptotically to certain limiting values is formed. The ampli- 

tude o f  the wave is determined f rom (9) for  "t ~ ~o: 0s = 1 + l/al. As fol lows f rom (7), this value o f  0s 

corresponds to the limiting case where fc = 0, i.e., complete lightening of  the medium is realized. Thus, the 

velocity o f  the temperature wave and the velocity of  the lightening wave are the same, and then from (4) with 

account for  the expression ct = a 0 -  y ( T - T o )  (in dimensionless form this is the expression for fc according to 
(7)), we obtain 

2 a  1 
Vs - 1 - exp ( -  2a(r)  " 

For  "r --> oo Vs = 2 a l ;  here the coordinate of  the temperature-wave front is Zs = 2a(c. The values o f  0s 
and Vs = 2al  are attained asymptotically for "r - o  co; however,  it was found that in the case where the condition 

2al'r >> 1 is fulfilled, the amplitude and velocity of  the wave have practically limiting values. Thus, for a 1 -- 

l, at the point z = 0, 0 = 0.990s for  "r = 1.96, and at the point z = l, 0 = 0.990s for x = 2.45. For "r = 2, 
V s --- 2.037a 1. 

In dimensional form we have 

T s = T o + a o / '  ~ , V s = ~/qo/(ao pc) = qo/PC (T s - To). 

It is not difficult to note that the velocity of  the temperature wave satisfies the heat-balance condition; 
it is proportional to the radiation intensity and inversely proportional to the amplitude of  the wave Ts - To; the 

amplitude in turn is independent o f  the intensity and is determined only by the absorption coefficient of  the 

radiation (tXo, 70). 
4. It was noted above that, in the general case, the dependence tx(T) is nonmonotonic and has an ex- 

t remum (formula (2)). Here, a piecewise-linear approximation of  the function ct(T) is possible. In dimensionless 
form this approximation is as follows: 

1 0 < 1 ,  

1 + a  1 ( 0 -  1) 1 --<0--<0m, 
f =  

a 3 - a  2 ( 0 - 0 m )  0 m_<0_< 1,  

a 4 0 > 01 , 

(1o) 

~lr0 
a 1 -- , a 2 = % 

~2T0 °~m a l  (~m -- % O~m -- ~1 
' a 3 =  , a 4 = - - ,  ' J ' l - T m  - , T 2 - - -  t ~  a 0 tx 0 T O T 1 - T m 

The solution of  Eq. (5) at ao = 0 for the dependence f(z, "c) determined according to (10) has the fo rm 

1 1 - exp ( -  2alx ) 
0a=  l + - -  

a I exp z - [1 - exp ( -  2alx)] ' 
l < 0 < 0 m ;  

0b = 0 m+ 
a 3 exp [2a 2 ( x  - "rm) ] - 1 

a2 exp (a3z) + exp [2a 2 ('t - "gm)] - 1 ' 0m < 0 --  01 ; 
( l l )  

0 c = 01 + 2a 4 (x - "cl) exp ( -  a4z) ,  0 > 01 . 
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Fig. 3. Tempera ture  distribution for  a nonmonotonic temperature depend-  
ence of  the absorption coefficient: 1) x = 0.1; 2) 0.25; 3) 0.6; 4) 1; Zm, 
boundary o f  the localization region of  heating. 

Fig. 4. Dynamics  o f  a temperature wave  in a heat-conducting medium:  1) 

x = 0.12; 2) 0.24; 3) 0.36; 4) 0.48. 

Here the funct ions  Xm(Z) and xl(z) are determined, respectively, f rom the conditions 0a(X = Xm) = 0 m, 0b (X  = 

xl) = 01 and  have  the form 

I I + a  1 (0 m - 1) 
'~m --2al In 1 + a  1 (0 m - 1) (1 - expz)  

(12) 

l [ ao (01 - 0 m) exp (a3z)] [ 1 + a3  _ a2  (01 _ 0m) J [ 
Xl = X m + ~ l n  - - -  . . . . . . .  . (13) 

Expressions (12) and (13) determine the time of establishment of  the temperatures 0m and 01 at an arbitrary 
point of  the medium.  Solving (12) for  the coordinate, we obtain the dependence Zm(X), f rom which it follows 
that 

[ , 1 ,,4, Zm(X- - ->~)=zm=ln  1 + (0m_ l ) a l  . 

Expression (14) determines the limiting position of  the isotherm 0m. At z > z~, the temperature  of  the med ium 
does not exceed  em for any heat ing time. Because of  this, the quantity z~ can be called the localization bound- 
ary of  heat ing o f  the medium. Indeed,  it follows f rom (11) that 

0 a ('C ~ co) = 1 + 1 1 then 0 a ('c ~ o o  z = z m) = 0 m • 
al  exp z - 1 ' 

Resul ts  o f  a calculation o f  the temperature field by  formulas (11)-(13) for 0m = 1.4, 01 = 1.6, a] = 7.5, 
a2 = 17.5, a3 = 4, and a4 = 0.5 are presented in Fig. 3, f rom which it is seen that heating o f  the medium in 
the regime wi th  localization occurs,  the temperature remains constant in the region z > Zm, and it increases with 

time in the region 0 < z < z~n- For  z--~ Zm, a large (but finite) temperature gradient is realized. The heating in 
the regime wi th  peaking, occurring as a result of  the dependence d ~ d T  > 0, is not able to manifest  itself com- 
pletely, since at 0 = 0m the propert ies  of  the medium change and do,/dT < 0. The temperature  wave is localized 
in the region z < Zm, since at 0 = 0 t  the properties of  the med ium change once again and in subsequent heating 
c¢ = c¢ l = const .  It follows f rom (14) that the coordinate o f  the boundary of  the region of  localization of  heat- 
ing is independent  of  the temperature  and is determined by the parameters ~m and ao. For  o~0--~ ~m, i.e., at 
al = 0, local izat ion of heating is absent and Zm ~ co. 
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5. We us consider the results of a numerical calculation of problem (5)-(6) for functions f(z, "c) deter- 
mined in accordance with (7) and (10). In the numerical calculations we used an implicit difference scheme with 
a variable step along the coordinate with the same order of approximation of  the equation and a boundary 
condition of the second kind at x = 0. Neglect of  heat conduction in problems of  heating with the use of 
volumetric heat sources is reliable for times [6] t << h2/a. This condition can be represented in the form 
xa0 << 1. For the parameters adopted above (with allowance for ~, = 1 W/(m.K)) we have a0 = 0.0012 and 
x<< 833. The characteristic times of heating are of  the order of x <  10 ( t< 6-105 sec). Then it can be expected 
that neglect of heat conduction is fully justified and the solutions obtained above in the approximation a0 = 0 
adequately describe actual processes. A comparison of  the numerical calculations with expressions (8)-(9) con- 
firmed this assumption: for times up to "c = 5, the results of the numerical calculations and the analytical expres- 
sioris are practically the same. 

A different pattern is observed in the case of a nonmonotonic dependence of  the absorption coefficient 
on the temperature (10). Results of numerical calculations performed for al = 45, a2 = 47, a 3 = I0, and a4 = 
0.5 are presented in Fig. 4. The fundamental difference between the results presented in Figs. 3 and 4 is that 
in a heat-conducting medium, localization of heating is absent. The heat conduction influences the quantitative 
characteristics only slightly (the temperature at a given point is practically the same with and without allow- 
ance for the heat conduction) but it changes essentially the qualitative characteristics of  the process. As a result 
of transfer of heat by the mechanism of heat conduction, the region of the nonlinear dependence t~(T) moves 
into the depth of the medium, with the result that a mechanism of volumetric heating that greatly surpasses the 
mechanism of heat conduction in intensity appears. Ultimately, a quasistationary temperature wave whose char- 
acteristics (amplitude and velocity) are practically independent of the heat conduction is formed. Thus, a small 
effect of heat conduction is favorable for realizing a large effect of volumetric heating. 

The velocity of the temperature wave decreases with time, which is due to the infiniteness of  the heat- 
source function (txl ;~ 0 and therefore a4 ~ 0 in (10)). For tXl ~ 0, behind the temperature-wave front there is a 
heating region (where 0 > 01) in which a portion of  the radiation energy is absorbed and the motion of  the 
temperature-wave front is slowed down. From the integral of the heat balance, an expression determining the 
deceleration of the temperature-wave front that is due to the infiniteness of the heat-source function follows: 

q<x) O0 dZlf dz 1_ 1 ~ ~ d z ,  Zlf=Z l ( a  1 = 0 ) .  
dx dx O l - 1  o 

Substituting here the expression for 0 from Eq. (5) with f = a4, after some manipulation we obtain 

dzlf dZl a 0 00(z1, x) 2 - - - - - + - -  - -  + [ 1 -  exp ( -  a4zl)] 
dx d'c 01 - 1 Oz ~ " 

Upon integration of this equation in the approximation a0 = 0 with allowance for the fact that 

2 dz~f 
0 1 - 1  - V s -  d'c ' 

we have 

1 [ 2a4 (,[_,Cs)]" 
Z1=~44 In 1 + 0 1 _  1 (15) 

This expression determines the law of motion of the temperature-wave front, and 'c s is the time of  wave for- 
mation determined from the condition 0(0, %) = 01. The values of zl calculated by the indicated formula prac- 
tically coincide with the results of numerical calculations performed with allowance for the heat conduction, 
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since the influence of the latter, resulting in some increase in the wave-front velocity, is negligibly small for 
actual times of the process. The velocity of the temperature wave determined from (15) is as follows in dimen° 
sional form: 

Vs- q0 

pc (T 1 - To) + 2otlq 0 (t - ts) 

It is seen that the decrease in the velocity with time is due to the fact that (z I :g: 0. For oq = 0, this 
expression yields the value of  the velocity obtained in Sec. 3. 

The numerical experiments have shown that the temperature wave possesses structural stability. Tem- 
perature disturbances of  arbitrary amplitude arising at the initial or any subsequent moment of time have no 
influence on the structure of the temperature wave. At the initial moments the peak of a disturbance increases 
fairly rapidly (especially in the region of peaking dtx/dT > 0) and, as a result of  heat conduction, some a spread 
of the disturbance in space occurs. When the temperature wave approaches, the fundamental amplitude of the 
disturbance peak is cut by the wave, which leaves behind a relatively small disturbance of the temperature 
profile, which disappears with time. 

The investigated features of the temperature field observed in dissipation of energy of electromagnetic 
radiation energy into heat determine the possibility of control and optimization of the process of heating vari- 
ous media. 

N O T A T I O N  

Q, density of  the heat sources; t~, q0, and o ,  absorption coefficient, intensity, and frequency of the 
electromagnetic radiation; Co, velocity of light in vacuum; ~ and tan 8, dielectric permittivity and tangent of the 
dielectric-loss angle of the medium; x, coordinate; t, time; T, temperature; h, depth of penetration of electro- 
magnetic radiation into the medium; oc0, otto, and al, characteristic absorption coefficients; To, Tin, and Tl, char- 
acteristic temperatures; X, coefficient of thermal conductivity; pc, heat capacity per unit volume of the medium; 
T, Tl, and T2, temperature coefficients of absorption; 0s, Zs, and Vs, dimensionless amplitude (temperature), co- 
ordinate, and velocity of the temperature wave; 0, z, and "c, dimensionless temperature, coordinate, and time; 
to = pcTo/o, oqo, characteristic time of heating; Xm and xl, characteristic times; Zm('0 and zl(z), dimensionless 
coordinates of the isotherms 0 = 0m and 0 = 01; Zm, localization boundary of heating; a, coefficient of thermal 
diffusivity of the medium; Zlf and zl, coordinates of the temperature-wave front for oq = 0 and ct ~ 0; Xs, time 
of temperature-wave formation. 
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